Replacing the gluten network to produce high quality pasta is a great technological challenge. One of known solutions to the problem is the addition of xanthan gum. This paper focuses on the possibility of obtaining a new type of gluten-free maize-field bean pasta and explores the characteristics of phenolics content, antioxidant activity, cooking quality, textural and thermotropic behavior as well as the microstructure of pasta products with the various levels of added xanthan gum. The obtained results revealed that 0.25, 0.50 and 0.75% addition of xanthan gum to pasta did not have significant influence on its phenolics content and antioxidant activity, whereas 1.00% addition caused a decrease in the tested parameters. On the other hand, the opposite effect of gum addition on the cooking quality, texture characteristic and microstructure was observed. The addition of xanthan gum to the formulation improved pasta quality while reducing the leaching of its components into the cooking water. Pasta prepared with 1.00% xanthan gum showed the lowest cooking loss, the highest firmness, and the lowest adhesiveness. These results revealed a significant influence of xanthan gum content on pasta properties as confirmed by the thermal analysis and SEM microstructure observations.