Wax collection behavior has not yet been described in the honeybee; it is typical of another Apis species. The wax collection was more difficult to observe due to the different biology of Apis mellifera and the fact that beekeepers do not display combs around the apiary to avoid the spread of bee diseases and robberies. The transport of wax in the pollen basket is typical of Apis florea; additionally, these bees have preferences for natal combs, which are significantly greater than for non-natal combs. Before they abandon their nests, these migratory bees following the nectar flow collect and transport some wax in their pollen baskets. This helps them to build a new nest quickly. The collection of available wax by both A. florea and A. mellifera is economically justified, as it reduces consumption of energy and honey supplies for the production of wax. The economic balance is believed to determine the collection of wax covers of Ceroplastes sp. soft scale insects by A. mellifera. This can be confirmed by the comparison of the energy value of wax (12.7 kcal/g) and honey (3.1 kcal/g), which indicates an over fourfold energy gain in favor of honey stored in the bee colony. The energetic trade-off between wax secretion and collection from an old nest may explain why A. florea is probably the only honeybee species known to recycle wax if the new breeding site is located at a distance lower than 100–200 m away from the nesting site. In such a case, it energetically pays off to recycle the wax. The same is probably true in A. mellifera, as we observed that wax was placed on the tops of the apiary hives at a distance lower than 100 m away from the colony. This is also reflected by the economic conversion rates, as a bee colony consumes from 4 to 8 kg of honey to produce 1 kg of wax. Our observations show that A. mellifera collect wax in pollen baskets. In addition, wax collection by honeybees is a static process occurring at the site where wax is present; bees do not have to flight, unlike in the case of pollen pellets, which are formed during flight. This paper addresses two completely unknown issues that make up two hypotheses: one is associated with collection of propolis into the pollen basket to stick the light wax fragments, and the other assumes saving energy required from the bee organism, which can be used to support colony functioning.