Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: a comparison of climate niche modelling approaches

Abstrakt

Background The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe. Methods A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. Results The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller’s calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15. Conclusions This comprehensive analysis suggests that there is no single ‘best practice’ climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.

Autorzy

Madeleine Noll
Madeleine Noll
Richard Wall
Richard Wall
Benjamin L. Makepeace
Benjamin L. Makepeace
Hannah Newbury
Hannah Newbury
Rene Bodker
Rene Bodker
Estrada Agustin
Estrada Agustin
Jacques Guillot
Jacques Guillot
Pereira Da Fonseca Isabel
Pereira Da Fonseca Isabel
Probst Julia
Probst Julia
Paul Overgaauw
Paul Overgaauw
Christina Strube
Christina Strube
Fathiah Zakham
Fathiah Zakham
Stefania Zanet
Stefania Zanet
Vineer Hannah Rose
Vineer Hannah Rose
artykuł
Parasites & Vectors
Angielski
2023
16
384
otwarte czasopismo
CC BY 4.0 Uznanie autorstwa 4.0
ostateczna wersja opublikowana
w momencie opublikowania
2023-10-25
100
3
0
0