Responses of RTgill-W1 cells to cyanobacterial metabolites microcystin-LR, anabaenopeptin-A, cylindrospermopsin, their binary and ternary mixtures

Abstrakt

The aim of our study was to investigate the effects of cyanobacterial metabolites: microcystin-LR (MC-LR) anabaenopeptin-A (ANA-A), cylindrospermopsin (CYL), their binary and ternary mixtures on rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1) cell line. We determined the following cell parameters: Hoechst and propidium iodide (PI) double staining, intracellular ATP level with luminometric assay, glutathione level with ThiolTracker Violet®- glutathione detection reagent and cytoskeletal F-actin fluorescence. The results showed that although reduction of Hoechst fluorescence was observed in both binary and ternary combinations of cyanobacterial metabolites, the mixture of MC-LR + ANA-A + CYL was the most potent inhibitor (EC50 = 148 nM). PI fluorescence and ATP levels were more increased in the cells exposed to the mixtures than those exposed to the individual metabolites with synergistic toxic changes suggesting apoptosis as the mechanism of cell death. Reduced glutathione level was also decreased in cells exposed both to single metabolites and their mixtures with the highest decrease and synergistic effects at 334 nM MC-LR+334 nM ANA-A+ 334 nM CYL suggesting induction oxidative stress by the tested compounds. Reduction of F-actin fluorescence was found in the cells from all of the groups exposed to individual metabolites and their mixtures, however the highest level of inhibition showed the binary MC-LR + CYL and the ternary MC-LR + ANA-A + CYL with synergistic interactions. The study suggests that in natural conditions fish gill cells may be very sensitive to individual cyanobacterial metabolites and more prone to their binary and ternary mixtures.

Autorzy

artykuł
TOXICON
Angielski
2024
249
108059
100
2,6
0
0